Fabrication of mesoporous silica shells on solid silica spheres using anionic surfactants and their potential application in controlling drug release.
نویسندگان
چکیده
In this work, mesoporous shells were constructed on solid silica cores by employing anionic surfactante. A co-structure directing agent (CSDA) has assisted the electrostatic interaction between negatively charged silica particles and the negatively charged surfactant molecules. Synthetic parameters such as reaction time and temperature had a significant impact on the formation of mesoporous silica shelld and their textural properties such as surface area and pore volume. Core-mesoporous shell silica spheres were characterized by small angle X-ray scattering, transmission electron microscopy, and N(2) adsorption–desorption analysis. The synthesized particles have a uniformly mesoporous shell of 34–65 nm and possess a surface area of ca. 7–324 m2/g, and pore volume of ca. 0.008–0.261 cc/g. The core-mesoporous shell silica spheres were loaded with ketoprofen drug molecules. The in vitro drug release study suggested that core-mesoporous shell silica spheres are a suitable nanocarrier for drug molecules offering the possibility of having control over their release rate.
منابع مشابه
Preparation and Characterization of Rifampin Loaded Mesoporous Silica Nanoparticles as a Potential System for Pulmonary Drug Delivery
The goal of this research is to determine the feasibility of loading rifampin into mesoporous silica nanoparticles. Rifampin was selected as a model lipophilic molecule since it is a well-documented and much used anti tuberculosis drug. The mesoporous silica nanoparticles were prepared by using Tetraethyl ortho silicate and cetyltrimethyl ammonium bromide (as surfactant); The prepared nanoparti...
متن کاملPreparation and Characterization of Rifampin Loaded Mesoporous Silica Nanoparticles as a Potential System for Pulmonary Drug Delivery
The goal of this research is to determine the feasibility of loading rifampin into mesoporous silica nanoparticles. Rifampin was selected as a model lipophilic molecule since it is a well-documented and much used anti tuberculosis drug. The mesoporous silica nanoparticles were prepared by using Tetraethyl ortho silicate and cetyltrimethyl ammonium bromide (as surfactant); The prepared nanoparti...
متن کاملMesoporous Silica Nanoparticles as a Nanocarrier for Delivery of Vitamin C
Background: In the last decades, mesoporous silica nanoparticles (MSN) are improved for drug delivery, imaging, and biomedical applications due to their special properties such as large surface area, high drug loading capacity, tunable pore size, and modification of surface area by functional groups. Objectives: The aim of this study was to evaluate MSNs as carriers for oral colon-specific and...
متن کاملEnhanced Solubility and Bioavailability of Apigenin via Preparation of Solid Dispersions of Mesoporous Silica Nanoparticles
In this study, a novel mesoporous silica nanoparticles drug carrier contributes to improving the solubility, dissolution, and the oral bioavailability of apigenin (AP). The apigenin of solid dispersion of mesoporous silica nanoparticles (AP-MSN) was prepared by physical absorption method and also, in-vitro drug release and in-vivo bioavailability performance were evaluated. Based on its solubil...
متن کاملEnhanced Solubility and Bioavailability of Apigenin via Preparation of Solid Dispersions of Mesoporous Silica Nanoparticles
In this study, a novel mesoporous silica nanoparticles drug carrier contributes to improving the solubility, dissolution, and the oral bioavailability of apigenin (AP). The apigenin of solid dispersion of mesoporous silica nanoparticles (AP-MSN) was prepared by physical absorption method and also, in-vitro drug release and in-vivo bioavailability performance were evaluated. Based on its solubil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 17 11 شماره
صفحات -
تاریخ انتشار 2012